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It is shown that, according to the linearized theory of long waves in a rotating, 
unbounded sea, if there is a discontinuity in depth along a straight line separating 
two regions each of uniform depth, then wave motions may exist which are 
propagated along the discontinuity and whose amplitude falls off exponentially 
to either side. Thus the discontinuity acts as a kind of wave-guide. 

The period of the waves is always greater than the inertial period. The wave 
period also exceeds the period of Kelvin waves in the deeper medium. As the 
ratio of the depth tends to infinity, the wave period tends to the inertial period 
or to the Kelvin wave period, whichever is the greater. On the other hand as the 
wavelength decreases (within the limits of shallow-water theory) so the waves 
tend to the non-divergent planetary waves found recently by Rhines. 

In an infinite ocean of uniform depth free waves with period greater than 
a pendulum-day cannot normally be propagated without attenuation (if the 
Coriolis parameter is constant). But non-uniformities of depth provide a means 
whereby such energy may be channelled over great distances with little attenua- 
tion. 

It is suggested that a gradually diminishing discontinuity will act as a chroma- 
tograph, each position along the discontinuity being marked by waves of a 
particular period. 

1. Introduction 
It is already well known that surface waves in water of finite depth may be 

trapped along a sloping beach (Stokes 1846; Urselll952; Eckart 1951) or may be 
totally reflected at a discontinuity in depth, with only an exponential fringe 
remaining on the deeper side (see, for example, Snodgrass, Munk & Miller 1962). 
These effects can be regarded as the result of wave refraction (Eckart 1951; 
for a recent discussion see Longuet-Higgins 1967) and take place even in the 
absence of Coriolis forces due to rotation. 

On the other hand it can be shown that the effect of rotation on waves of a 
given frequency is to produce a decrease in the square of the wave-number to  
such an extent that if the Coriolis parameter exceeds the wave frequency the 
wave-number can no longer be real; the wave amplitude must diminish exponen- 
tially in at least one horizontal direction. 

These two circumstances lead one to speculate as to the possibility of waves 
being trapped along a discontinuity, with an exponential decay on both sides, 
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the decay on the deeper side being due essentially to wave refraction and that 
on the shallower side being due to the rotation. 

However, the motion on the deeper side will also be affected by the rotation, 
and it then becomes a delicate question whether all the necessary conditions, 
including the appropriate boundary conditions a t  the discontinuity itself, can be 
met. 

Now the existence of a sloping bottom, particularly a discontinuity in depth, 
will tend to restrict the horizontal component of the particle motion on the 
deeper side. Moreover, we know from the example of Kelvin waves (Thomson 
1879) that the effect of restricting the horizontal component of displacement 
normal to the direction of wave propagation is to produce an attenuation of the 
wave amplitude to the left of the direction of wave propagation (in the northern 
hemisphere) ; for then the slope of the wave surface along the crests is such as to 
balance the Coriolis forces arising from the forwards particle motion at  the crests; 
and similarly for the wave troughs. Hence the effect of rotation on the waves on 
the deeper side of the discontinuity will be to increase the trapping effect when 
the boundary is on the right of the direction of wave propagation, and to decrease 
it if the boundary is on the left. The former situation is clearly more likely to 
result in the type of motion in which we are interested. 

As for the fluid in the shallower depth of water, the discontinuity in depth will 
have no such restraining effect on the normal component of the velocity. Rather, 
the deeper water will act as a release. Hence, it may be possible for the wave 
amplitude on the shallower side to decay in the opposite sense, as desired. 

At this stage then we can foresee that doubly trapped wave motions are most 
likely to occur under the following conditions: (i) the wave period exceeds the 
period of inertial waves (one pendulum-day); (ii) the direction of propagation 
of the waves is the same as that of Kelvin waves in the deeper water, with the 
discontinuity to the right of the direction of wave propagation. 

Further, if the water on the shallower side of the barrier were replaced by a 
rigid block, this would impose a restraint on the fluid motion on the deeper side. 
Hence by a general physical principle we expect that (iii) the wave period will 
exceed the period of Kelvin waves of the same wavelength propagated in the 
deeper water. 

In  the following paper these predictions are investigated analytically on the 
basis of the theory of long waves of infinitesimal amplitude in a rotating sea. 
All three of the above statements are verified, that is to say it is found that the 
trapped waves do exist analytically and that they always fulfill the three 
assertions made. 

In one limiting case, that of zero depth on the shallower side, the waves reduce 
to Kelvin waves on the deeper side. In  a second limiting case, that of zero diver- 
gence (or short wavelength, within the limits of the theory) the waves reduce to 
non-divergent planetary waves of the type discovered recently by Rhines (see 
Bretherton, Carrier & Longuet-Higgins 1966, p. 404). 

A theory of low-frequency waves trapped along a continental shelf of Jinite 
width was recently developed by Robinson (1964). Possible generating mech- 
anisms for such waves have been suggested by Mysak (1967) and Buchwald 
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(unpublished). It now appears that for the existence of such waves the finite 
width of the shelf was not always essential. 

The anaIysis is given in $9 2 and 3 of the present paper and in the appendix. 
In  $4 we examine briefly the related problem of the reflexion and transmission 
of waves at  a discontinuity. The conclusions, including possible implications 
for propagation of wave energy in the oceans, are summarized in $ 5. 

2. Basic equations 
Let 2 and y be rectangular co-ordinates in the horizontal plane and let t denote 

the time. We shall assume the motion to be governed by linearized shallow- 
water wave theory, in which the equations of motion are 

and the equation of continuity is 

Here (u, v )  denote the components of velocity in the (x, y) directions; g is the 
elevation of the free surface above the equiIibrium level; f is the Coriolis para- 
meter, g the acceleration of gravity and h the equilibrium depth. At a discon- 
tinuity in depth we shall assume that the surface elevation and the normal 
component of the flux are continuous; thus 

1 
[ 4 = 0 7  p.4 2 = o ,  

where n denotes the unit normal to the discontinuity. 

denotes the frequency, we have 
We seek solutions periodic in the time t .  Then writing u, v, w cc e-d where cr 

-fu+icrv = g-- ,  aY ac I 

Solving for u and v from (2.4) we have (provided cr2 =+ f 2, 

(2.4) 
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and on substituting in ( 5 )  we obtain the differential equation for [ 

( V 2 + Y )  < = 0, 

where V2 denotes the two-dimensional Laplacian (a2/ax2+ P/8y2). The boundary 
conditions (2.3) take the form 

if the x-axis is taken normal to the boundary. 
We may have wave-like solutions 

< cc exp {i(I’x +my - at)) (2.9) 

t o  equation (2.7) provided that the wavenumbers I’ and m satisfy 

(2.10) 

It may be pointed out that the general tendency of the Coriolis term on the right 
of equation (2.10) is towards exponential rather than sinusoidal behaviour. 
Indeed if f 2  > a2 then I‘ and m cannot both be real, and the motion must vary 
exponentially in at least one horizontal direction. 

Consider then instead of (2.9) the solution 

[ cc exp{ - k+ i(my - d)), (2.11) 

which varies sinusoidally in the y-direction but exponentially ( I  being real) 
in the 2-direction. In  place of (2.10) we have 

The component of velocity in the x-direction is given by 

(2.13) 

The Kelvin-wave solution, in which 

m = & a/(gh)*, I = T f /(gh)Q, (2.14) 

is well known. This choice of m and 2 ensures that uvanishes identically; the com- 
ponent of the pressure gradient in the x-direction is exactly balanced by the 
Coriolis force. 

To fix the ideas let us suppose m and f to be both positive. Then if a is to be 
positive (so that the waves progress in the positive y-direction) 1 must be negative, 
that is, the waves decay exponentially to the left of the direction of propagation. 
This is a consequence of the conditions (2.13) that the transverse component of 
the velocity vanish. If u is not required to vanish it is possible to have waves 
which decay exponentially to the right of direction of propagation ( I  > 0). In  the 
following section we shall consider the possibility of joining two such solutions, 
which progress along a discontinuity in depth and which decay exponentially 
away from the discontinuity on either side. 
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3. Waves trapped along a discontinuity 
Let axes be chosen as in figure 1, with the x-axis normal to the discontinuity 

and the y-axis along the discontinuity itself. The mean depths to the left and 
right of the discontinuity are denoted by h, and h,. We seek a solution in the form 

(3.1) 

(3.2) 

exp{Z,x+i(my-at)} (x < O ) ,  

exp{l,x+i(my-d)} (x > O ) ,  

1, > 0, I, < 0. 

cK { 
where 

From equation (2.12), we have in generalt to satisfy 

X 

FIGURE 1. Sketch of physical situation. 

The expressions (3.1) already satisfy the condition that 5 be continuous a t  
x = 0, and from (2.13) the continuity of flux normal to the boundary requires that 

h,(aZ,-mf) = h2(d2-mf). (3.4) 

For convenience we choose units in which 

m = l ,  f = 1  

and write 

Then equations (3.3) and (3.4) become 

h,/h, = y > 1; f2/m2gh, = E > 0. 

1;-1 = E y ( l - a 2 ) ,  

I;-1 = s(l-a2), 

(u1,- 1) = y(v1,- 1) .  
(3.7) 

We propose now to examine the range of the parameters y and E for which solu- 
tions a,, 12, a to (3.7) exist satisfying the conditions (3.2). 

to equations (2.1), (2 .2 )  and (2.3) of the type required. 
t That is to say if ua +fz. If uz = f it can easily be shown that there are no solutions 
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As a first step it is convenient to derive an identical relation connecting 
I,, I ,  and u, independently of y and E .  Thus on eliminating y and E from equations 
(3.7) we have 

This can be written 

Since (Il- I,) cannot vanish, by equations (3.2), we may divide by this factor, 

(3.10) 
and on writing 

(so that 171 denotes the period of the oscillation in pendulum-days) we obtain 
the symmetrical relation 

~ l ~ 2 + ~ 1 T + ~ 2 7 + 1  = 0. (3.11) 

In  the space of the co-ordinates (I,, a,, r )  this represents a quadric surface which 
can be reduced to normal form by the substitution 

(9 - 1) (Crl, - 1) - ( I ;  - 1) (ul, - 1) = 0. 

( I ,  - I,) (d, I ,  - I ,  - I ,  + g) = 0. 

(T = - 1/r, 

(3.8) 

(3.9) 

I1 = (+7--77 

I ,  = -<+7--7, 

= &I1 - I , ) ,  
7 = *(I1 + I,) + 7. 

( 2 - 7 2 + 7 2  = 1 

I or inversely 

Equation (3.11) then becomes 

from which it is clear that the surface is a hyperboloid of one sheet. 
Now the third of equations (3.7) can be written 

(4-7)  = y(l2-7), 

which in the new co-ordinates becomes 

This represents a plane through the r-axis. From 
that r 2 - 1  = v2-t2 > 1. 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.14) it  follows immediately 

(3.17) 

Therefore 1.1 always exceeds unity. Hence the wave period is always greater 
than a pendulum-day. 

By use of the new co-ordinates one can also obtain two simple relations in- 
volving only E, r and one or other of the parameters y and E .  Essentially we do 
this by considering the projection on the (5, 7)-plane of the intersections of the 
plane (3.16) with the other surfaces of (3.7) and (3.14). Thus from (3.16) and 
(3.14) we have on eliminating 7 

(3.18) 

whence (3.19) 
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Similarly from the second of equations (3.7) we have 

( - g + q - 7 ) 2 =  1+€(1-7-’) 

and again eliminating 7 by (3.16) we obtain 

(3.20) 

[ =  g(y-1){7~[1+€(1-7-2)]*}.  (3.21) 

Writing 

we then have the pair of relations 

6’ = +y-*(+- I)* = F ( ~ , T ) ,  

[‘= 7 + [ 1 + ~ ( l - T - ~ ) ] *  = G(B,T). 

(3.22) 

(3.23) 

(3.24) 

These give us two families of curves whose intersections will correspond to possible 
wave periods 171. 

However, we must first take account of the restrictions imposed by the two 
inequalities (3.2). These can be simply expressed in terms of the new co-ordinates 
by (3.12); on using (3.15) we find that I ,  > 0 and 1, < 0 imply respectively 

y e  > r  and < r .  (3.25) 

Since y > 1, the only possibility is that [’ and 7 are both positive. Hence in 
(2.33) we must take the positive sign and again, since 

y-$(72- 1)* < ( 7 2 -  l)* < 7, 

the only possibIe intersections of (3.24) with (3.23) correspond to the negative 
sign of the radical in (3.24). 

In  figure 2 we have plotted the two families of curves 6’ = F(y,r) and 
4‘ = G(B,T)  when 6‘ and 7 are both positive. The limiting curve 6‘ = F ( ~ , T )  is 
also shown. Since, for large values of 171, 

F(y,7) Y - k  Q(G4 7, (3.26) 

it is clear that the curve t’ = F must in general intersect the curve 6’ = G in at  
least one point apart from 5‘ = 0, 7 = 1. On the other hand since the second 
derivatives of F and G are of opposite sign there can be only one such inter- 
section. To see that this point of intersection satisfies (3.25) we note that (3.25) 
together with (3.23) implies that 

g’ < 7 -  (1/7). (3.27) 

Remembering that (’ and r are both positive we see that the intersections have 
t o  lie below the dotted curve shown in figure 2. This the intersections always do, 
since they must always satisfy (3.24) with e > 0. 

Three limiting cases are of interest. First, when y = 1 the curve c’ = F ( ~ , T )  
intersects none of the curves 6‘ = G(e,7) (save at  infinity). Hence there are no 
trapped waves, as we should expect since y = 1 corresponds to h, = h, and hence 
uniform depth h. 

Second, when y = 03, the function F ( ~ , T )  vanishes and so the solutions are 

(3.28) 
given by G ( E , T )  = 0. 

Hence (72-1)(1-€/72) = 0. (3.29) 



424 M .  8. Longuet-Higgins 

Disregarding the case r2 = 1, that is vZ = f, we have 

r = E = (gh)-* (3.30) 

(m and f being equal to unity). These correspond to Kelvin waves, as we expect 
since h,/h2 -+ 0. From figure 2 it is clear that the wave period r for general values 
of y always exceeds, or at  least equals, the Kelvin wave period r,, even when 
e > 1. On the other hand when B < 1, so that the Kelvin wave period is less than 
a pendulum-day, the wave period r has the lower bound 1 as shown previously. 

3 

2 

1 

L O  
I 

-1 

-2 

-3  

- 7  

FIGURE 2. The functions E' = F(y,7) (broken curves) and 5' = G(Y,T) (solid curves), whose 
intersection gives the wave period (71. 

The third limiting case is when B + 0. These correspond to non-divergent 
planetary waves, the special case already discovered by Rhines (see Bretherton 
et al. 1966). We have then from (3.24) 

G(e,r)-+G(O,T) = r -  1 (3.31) 

and so on equating (3.23) and (3.24) 

(?- 1) = y ( r -  1)2. (3.32) 
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Again ignoring the case 7 = 1 we have 

(T+  1) = y(7- 1)) 

and so 

100 

10 
7 

(3.33) 

(3.34) 

1 -0 
E 

10 

FIGURE 3. The wave period 7 in pendulum-days, as a function of the parameter a = 
f 2/mzgh,, where m = wave-number, f = Coriolis parameter, g = gravity and h, = mean 
depth on deeper side. The curves are shown for constant values of y,  the ratio of the depths. 

The corresponding values of El and 1, may be found from equations (3.7). They 

(3.35) 
are simply 

I ,  = 1, I, = -1 .  

In  other words the wave amplitude in this case decays exponentially at  the same 
rate on either side of the discontinuity. The modulus of decay is equal to unity, or, 
in real units, to the wave-number rn. 

In  general, since r is always positive, v is negative, and it follows that the 
phase velocity vlrn is negative, or the waves are necessarily propagated with the 
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discontinuity on the right of the direction of propagation, regarded from deep 
water. (When f is negative, the discontinuity is on the left.) 

Hence all the predictions made in $ 2  concerning the period and the direction 
of propagation have been verified. 

30 

10 

1 
0.1 1 -0 

€ 

10 

FIGURE 4. The proportional rate of decay 1, on the shallower side of the discontinuity, 
shown as a function of E for given values of y, = h,/h,(see legend to figure 2). 

Some explicit analytical expressions for the wave period 171 as a function of 
y and E, are derived in the appendix. In  figure 3, 1.1 has been plotted as a function 
of E for fixed values of y. The corresponding values of the exponential decrements 
I ,  and - I ,  are shown in figures 4 and 5. From (3.7) it  is clear that we must always 

(3.36) 
have I ,  > -I, > 1. 

Figure 3 also shows that 171 is an increasing function of E.  Hence -cr is an 
increasing function of m and so the group-velocity is in the same direction as 
the phase velocity. As E-+ 1 and y - f c ~ ,  so the group-velocity tends to infinity. 

The tangential component of velocity near the discontinuity is found from 
equations (2.6) to be given by 

crrn-fl 
cr2- f 2  

2,=- S L  (3.37) 

where 1 = I, or I ,  according as x 6 0. In  non-dimensional units we therefore have 
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Now from (3.36), since - 1 < c < 0, we have 

- ( C T - Z J  > 1 > 0, -(a-Z2) < 0. (3.39) 

Therefore the velocity at  the wave crests is forwards (in the direction of wave 
propagation) on the deeper side, and backwards on the shallower side. The 
discontinuity in the velocity is given by 

(3.40) 

So from (3.36) IV2-V11 ’ 2ls61. (3.41) 

We see then that our model necessarily implies a vortex sheet, of alternating 
sign, in the plane x = 0. 

3 

--z E 2  
u 

I 

1 
0. i 1 .o 10 

E 

FIGURE 5. The proportiona1 rate of decay - Z2 on the deeper side of the discontinuity, 
shown as a function of E for given values of (see legend to figure 2). 

4. The reflexion of waves at a discontinuity 
It may be of interest to examine briefly the conditions under which waves in 

one medium may be totally reflected at  the discontinuity. From equation (2.7) 
it  follows that if waves are to be propagated without attenuation on either one 
side or other of the discontinuity, then we must have 

in other words the period must be less than a pendulum-day. There is thus no 
possibility of such motions overlapping with the trapped wave motions, all of 
whose periods must exceed a pendulum-day. 

A wave incident from the side x: < 0 (water of depth hl) and being partially 
reflected and partially transmitted may be represented by the expressions 

(cosZix+AsinZix)exp(i(my-~~t)t)) (x < 0) ,  

(x > 01, exp (Z,x + i(my - d)} 
c = {  

where 1; and Z2 are given (in non-dimensional units) by 

- Z ; 2 = € : y ( l - & ) + l ,  

1; = €( 1 - g 2 )  + 1 
(4.3) 



428 M .  S. Longuet-Higgins 

and A is a constant to be determined. 1; must be real, 1, may be real or imaginary, 
but with 2(12) < 0. The assumed forms (4.2) satisfy the continuity of 6 at x = 0, 
and the continuity of the normal flux is satisfied provided that 

hi( - GI; A +fm) = h, ( - ~ r l 2  +fm). (4.4) 

Thus in non-dimensional units 

In the present section it has not yet been specified whether h, is greater or less 
than h,, so that y may be less or greater than 1. However, on subtracting the 
two equations (4.3) we have 

-1;2-1; = e(y- l ) ( l -CrZ) .  (4.6) 

But we have seen that g2 > 1. Hence if Z; is to be real we must have y > 1. In  
other words, total reflexion can take place only if the waves are incident from 
the shallower side. 

The critical angle of incidence occurs when I ,  = 0. From (4.3) this gives 

€(1-0-2)+1 = 0 (4.7) 

and so Cr2 = 1 +€--I. (4.8) 

z;2 = y-1. (4.3) 

Again from (4.3) we have in that case 

Thus the tangent of the critical angle of incidence is given by 

m 1 _ -  - 
1; (y-l)K 

(4.10) 

This is remarkable, in so far as the angle depends only on the ratio of the depths 
and is independent of the Coriolis parameter f. 

By a converse of the conclusion derived previously from (4.6)) we see that if a 
wave is incident on the ridge from the deeper side it must be at  least partially 
transmitted. The reflexion coefficient can never vanish; for if the wave is to be 
transmitted I, must be purely imaginary while (+ is real. Hence the numerator of 
equation (4.5) cannot vanish, and indeed A must be complex. The amplitude of 
the reflected wave is equal to 41 1 +iA 1 , which can then not be zero. 

It may be asked whether a wave propagated from infinity and incident on the 
ridge from either side (but not exactly along the ridge) would be capable of setting 
up any trapped waves; in other words whether any of the incident energy could 
be captured by the discontinuity. 

Clearly if the wave is periodic in time such capture is impossible; for the period 
of the incident waves must be less than a pendulum-day while the period of the 
trapped waves is greater than a pendulum-day. 

A limited periodic disturbance with period greater than a pendulum-day 
could not normally be propagated from infinity without attenuation (as shown 
in $ 2 ) .  However, if the initial disturbance takes place in the neighbourhood of a 
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discontinuity, the latter provides a suitable channel along which wave energy 
may be guided for an indefinite distance, without any attenuation save that due 
to viscous and other effects. 

5. Conclusions 
We have shown that it is theoretically possible for waves to be trapped along a 

discontinuity in depth, the wave amplitude decreasing exponentially to either 
side. The waves always travel in the direction of Kelvin waves in the deeper 
fluid, that is to say having the discontinuity to their right in the northern 
hemisphere to their left in the southern hemisphere. Their period always exceeds 
the period of the corresponding Kelvin waves, to which they may tend whenever 
the Kelvin wave period exceeds the inertial period; that is to say whenever 

f2 > 1. 
m29h2 

If the above inequality is not satisfied then the lower limit of the wave period is 
equal to the inertial period. 

An appropriate name for the type of motion described above would be a 
‘double Kelvin wave’, or more picturesquely a ‘seascarp’ wave. 

It has been shown also that propagating waves, because their period is less than 
the inertial period, cannot be captured by a discontinuity in depth, although 
they may be totally reflected if they approach from the shallower side. On the 
other hand periodic disturbances whose period is greater than the inertial period, 
provided they occur in the neighbourhood of the discontinuity (that is to say 
within a distance of order [gh/( f2-(r2)]*)  are capable of generating trapped 
waves, and these may be channelled for great distances along the discontinuity. 

It is interesting to speculate what will happen if the discontinuity gradually 
disappears, the depth becoming uniform. Since wave energy cannot be pro- 
pagated across a region of uniform depth, presumably the wave energy will 
accumulate in the transition zone until an instability occurs. 

To investigate this idea more closely, consider waves of a particular period 7. 
These will correspond to points along a particular horizontal line r = constant 
in figure 3. As the contrast in depth is diminished so y = h,/h, decreases. Since 
the curves in figure 3 represent monotonically varying functions, 8 must also 
decrease monotonically, that is to say the representative point moves to the 
left along the line T = constant. A limit is reached when e-+ 0, corresponding to 
non-divergent waves. Then, as we have seen, 

Clearly, the greater the period, the smaller is the corresponding value of y and so 
the further the waves can be propagated along the discontinuity. 

It is easy to show that for non-divergent waves (€3 0) the group velocity tends 
to zero. The flux of energy being independent of position, it follows that the 
energy density even in a wave group of finite length must tend to infinity (within 
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the limits of the linear theory). Hence, we may expect that, if a continuous spec- 
trum of waves is propagated along a diminishing discontinuity, a t  any given 
point the corresponding periodicity given by (5 .2 )  will be prominent. The 
discontinuity thus acts as a kind of chromatograph. 

Because the limiting waves are non-divergent, this effect would appear in a 
record of horizontal currents, rather than pressure or surface elevation. 

At the same time it may be noted that as e+ 0 so the wave-number m becomes 
large (again within the limits of the theory); and since the exponential decre- 
ments I ,  and - I, are always greater than m it follows that the waves are confined 
to a narrower and narrower region on either side of the discontinuity. 

One aspect of our model theory may be thought questionable, namely, the 
presence of a singularity in the tangential flow along the discontinuity. This 
results directly from our assumed boundary conditions, that the surface eleva- 
tion and the normal component of the total flow are to be continuous at  the 
boundary. These conditions have been justified for a special example by Bar- 
tholomeusz (1958) in a system without rotation. In  the presence of rotation the 
assumptions have not yet been justified so rigorously. However, since the 
strength of the vortex sheet will vary sinusoidally in time, there seems no reason 
to suppose that, at small amplitudes, much vorticity will be propagated away 
from the discontinuity. Nevertheless, the high rate of shear will result in an 
additional loss of energy by viscosity, apart from that already existing at  the 
solid boundaries. 

It may not be necessary to assume that the depth is discontinuous, and hence 
it would be interesting to investigate the possibility of trapped wave motions 
when the depth undergoes a more or less smooth transition from one uniform 
value (when x < - 6, say), to  a second uniform value (when x > 6). Even with a, 
continuous transition, similarly trapped modes are to be expected, which will 
become double Kelvin waves as the width 26 of the transition zone tends to zero. 

Some attention should now be given to the problem of the forced excitation 
of trapped waves by normal atmospheric pressures or horizontal wind stresses. 
One may expect that the former will be more effective over deep water, and the 
latter more effective over the shallower water of a continental shelf. From the 
fact that the tangential velocity is of opposite sign on the two sides of the dis- 
continuity one may expect the most favourable conditions for wave generation 
to arise when the wind is parallel to the discontinuity and in opposite directions 
on the two sides of the discontinuity. However, even if the tangential wind stress 
is uniform in strength and direction it must generate a larger mean current in the 
shallower water. The difference in the mean currents on the two sides of the 
discontinuity will then tend to set up wave motions propagated along the 
discontinuity as before. 

One might at first sight imagine that baroclinic wave motions of a similar type 
could occur in stratified fluids, along horizontal paths where the density stratifi- 
cation of the fluid undergoes a change in vertical structure, However, such a 
system would not be in dynamical equilibrium without the presence of steady 
transverse currents to balance the horizontal gradients of pressure. The presence 
of currents would in turn alter the dynamics of the small perturbations and 
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probably would result in unstable waves similar to those which occur at  atmo- 
spheric fronts. This phenomenon, though interesting in itself is outside the scope 
of the present paper. 

Finally, we should like to make a reference to two papers by the Russian 
mathematician Voit (1961, 1963). In the first of these (Voit 1961) the author 
treated the problem of tidal waves propagated from the mouth of a channel into 
a semi-infinite plane, in which there was a depth discontinuity normal to the 
direction of the channel. This situation might have been expected to produce 
waves more or less trapped at  the discontinuity, if the wave period had been 
greater than the inertial period, and if the discontinuity had been sufficiently 
close to the mouth of the channel. However, the only case considered in detail 
was that of the semi-diurnal tide, for which the period necessarily does not exceed 
the inertial wave period; and thus no waves trapped at  the discontinuity were 
found. 

In  the second paper (Voit 1963) the author considered the transient distur- 
bance due to an initial elevation of the free surface, in an infinite basin in which 
there are two parallel discontinuities in depth. Again no trapped waves were 
found, due to the fact that the form of the initial disturbance was uniform in a 
direction parallel to the discontinuities. Had the initial disturbance been taken 
at right angles to the discontinuities, or inclined a t  some general angle, the 
phenomenon of wave trapping must have appeared. 

Appendix: Explicit expressions for T 
In  order to  derive explicit expressions for the wave period 171, it is convenient 

to  introduce instead of y and E two parameters a and o which remain unaltered 
when h, and h, are interchanged, namely 

and 
_ _  

Inversely, we have 
2w 

yi=a+(a2-1)4, € =  
01 + (a,- 1)* 

Now let equations (3.7) be written in the form? 

y-11; = 2wy-4( 1 - (r2) + y-1, 

yz; = 2wyq 1 - (r2) + y 

and y-41, + y412 = 2( 1 - 01”)ICT. 

To eliminate I, and I, we may first square both sides of (A 5 )  and substitute for 
y-lZ;, and ylg from (A 4), giving 

241, = 4 [ a ( a - w 2 ) +  1](1-(r7’)/(r2+2. (A 6) 

t Equation (A 7) below can also be derived by equating the functions F and C of 3 3;  
equations (A 4) to (A 6) represent an alternative. 
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On squaring again and substituting again from (A 5) we find, after division by 
(1 - a2) (1 - 6), the relation 

(a - w d y (  1 - (-9) - 1 = 0, (A 7) 

that is 

On writing 

= l-C+. 
1 

(a - w(T2)2 

1 -ah -- - A ,  c 2 = -  
a - wh ’ 

1 

equation (A 7) reduces to the simple form 

w h 3 - ( w - ~ ) ~ -  1 = 0. (A 10) 

h2= l-(?, so 7 2 =  l/(l-P). (A 11) 

I n  addition, (A 8) shows that 

The solution to  the cubic equation (A 10) depends, as is well known, on the 
relative signs of the coefficients w and (@-a) and also on the magnitude of 
(w - a)3/w. In  our application, w is always positive, and so we have the following 
cases. 

(i) If (w - a) > 0,  then the solution is given by 

A = r cos 8, 

where 

and 

according as wr3/4 2 1. In  the critical case when 

~ r 3 / 4  = 1, that is 4 ( ~ - a ) ~  = 27w, 

h = (4/w)4 - (1/2W)+, - (1/20)4 then clearly 

two of the roots being coincident. 
(ii) If (w - a) < 0 then the solution is given by 

h = r sinh 8, 

where 
r = 4(a-w) * , 38 = sinh-1 (f) . 

These are the analytical formulae promised earlier. A simple way to visualize 

= p (A 14) 

, ~ ~ - 3 p p -  1 = 0 (A 15) 

with p = (w - a)/3w5. (A 16) 

(A 17) P = (P3- 1)/3,U, 

the roots is as follows. Let 

so that (A 10) reduces to the even simpler form 

The behaviour of ,a as a function of p can be seen by solving (A 15) for p and 
plotting the function 
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as in figure 6. The asymptotes ,8 = p3/3  and /3 = - 1/(3,u) are also shown. Clearly 
,8 has a minimum value where ,u = - 2 3  and /3 = 2-8. If p exceeds this value 
,u has three roots; if ,8 is less than this value ,u has only one root. It can be shown, 
however, that in the former case eitherl, < 0 or I, > 0. Hence for trapped waves 
we are limited to the upper branch of the curve in figure 6. 

P 

FIGURE 6. Curves giving the roots of the cubic equation (A 15) as a function of p. 

Suppose now that we wish to plot the wave period T as a function of the 
parameter 8 (proportional to w r 2 )  for given values of y ,  = h,/h,. Let us begin 
by plotting A, = (1 - 1 / ~ ~ )  as a function of w(  = +$e) for given values of 
a, = g(y* + 7-4). Equation (A 16) shows that the parameter 

p = +(w"ao-*) (A 18) 

is a monotonically increasing function of w over the range 0 < o < m. Likewise 
equation (A 14) shows that 

h = w-s;u (A 19) 

is a monotonically decreasing function of o. Hence the curves of A(@) for given 
values of y have a form similar to that of figure 6. 

28 Fluid Mech. 31 
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It is now simple to make the transition to the curves of r (e )  for fixed values of y. 
These are shown in figures 3-5 (see $3).  

I am indebted to Dr V. T. Buchwald for stimulating discussions during his 
visit to the National Institute of Oceanography, and t o  Mr H. Griffiths for 
assistance with the numerical computations. 
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